A Tutorial on Optimal Control and Reinforcement Learning
methods for Quantum Technologies
arXiv:2112.07453

Luigi Giannelli’»?, Pierpaolo Sgroi?, Jonathon Brown?, Gheorghe Sorin Paracanu*, Mauro
Paternostro®, Elisabetta Paladino'*>°, and Giuseppe Falcil*>

IDipartimento di Fisica e Astronomia “Ettore Majorana”, Universita di Catania,

2CNR-IMM, Catania (University) Unit,

3CTAMOP, School of Mathematics and Physics, Queens University,

4QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science,
SINFN, Sez. Catania.

Pgi-controlclub, 2022-03-11

motivation

Quantum control is central to most quantum technologies
(computing, simulation, metrology, ...)

Quantum Optimal Control is a widely used tool for the development of quantum
technologies

Reinforcement Learning has huge success in robotics and games, and offers a
direct approach to control problems

1. population transfer in three-level systems and STIRAP
2. “super” very short mention of Optimal Control and application to 3LS
3. “brief” idea of Reinforcement Learning and application to 3LS

4. discussion and conclusions

population transfer in three-level
systems and STIRAP

population transfer in a three-level system

2,)(IeXrl £1re)

g)

population transfer in a three-level system

2,)(IeXrl £1re)

g)
p(t) = —%[H(t), p(®)] + g(2lsxelp(t)le><8| — leXelp(t) — p(t)]eXel)

population transfer in a three-level system

2,)(IeXrl £1re)

g)
p(t) = —%[H(t), p(®)] + g(2lsxelp(t)le><8| — leXelp(t) — p(t)]eXel)

[p(0) = [gXgl — p(T) = |rXr|]

population transfer in a three-level system

2,)(IeXrl £1re)

g)
p(t) = —%[H(t), p(®)] + g(2lsxelp(t)le><8| — leXelp(t) — p(t)]eXel)

fidelity
[P(O) = |g><g| I :O(T) = |VXV|] F = Tr{p(T)|rXr|}

population transfer in a three-level system - STIRAP

STimulated Raman Adiabatic Passage (STIRAP)!
- adiabatic protocol

« population of the lossy state |e) low

« Fxl

g)

1. R. Kuklinski, U. Gaubatz, F. T. Hioe, K. Bergmann, Phys. Rev. A 40 (11) (1989),
K. Bergmann, H. Theuer, B. Shore, Reviews of Modern Physics 70 (3) (1998),
N. V. Vitanov, A. A. Rangelov, B. W. Shore, K. Bergmann, Reviews of Modern Physics 89 (1) (2017).

population transfer in a three-level system - STIRAP

Adiabatic Theorem

Given a time dependent Hamiltonian H(¢t) and its instantaneous eigenstates |n(t))

Ho(0)|n(1)) = E,(t)|n(1)),

*hf(n(0)10,m()| < |En(t) = Ep(t)|,Ym # n.

population transfer in a three-level system - STIRAP

Adiabatic Theorem

Given a time dependent Hamiltonian H(¢t) and its instantaneous eigenstates |n(t))

Ho(0)|n(1)) = E,(t)|n(1)),

the solution of the Schrodinger equation ihallg(tt» = Hy()[9(1))

in generalis [Y()) = ¥ c,(DIn(), X len(D” = 1.

*hl(n()10,m()| < |Ex(t) = Ep(t)|,Ym # n.

population transfer in a three-level system - STIRAP

Adiabatic Theorem

Given a time dependent Hamiltonian H(¢t) and its instantaneous eigenstates |n(t))

Ho(0)|n(1)) = E,(t)|n(1)),

the solution of the Schrodinger equation ihallg(tt» = Hy()[9(1))

in generalis [Y()) = ¥ c,(DIn(), X len(D” = 1.
If Hy(t) is slowly varying? and the initial state is an eigenstate, ie |1(t;)) = |m(t;)), then

[h(t)) =~ elmO|m(t)), Vt

i.e.c,(t) ~ elms

*hl(n()10,m()| < |Ex(t) = Ep(t)|,Ym # n.

adiabatic following of an instantaneous eigenstate

elgenenergy

initial state final state

time

population transfer in a three-level system - STIRAP

0 Q@ 0
the three-level Hamiltonian we consider is % = % Q1) 24, Q1)
0 Q. () 0

population transfer in a three-level system - STIRAP

0 Q) 0
the three-level Hamiltonian we consider is f(l) l Q1) 24, Q1)
0 Q. () 0
and its instantaneous eigenstates are
cos 6 sin 6 cos ¢ sin Osin ¢
ao@ = o | la@=| —sing | la,@ =| cos¢
—sin 6 cos B cos ¢ cosOsin ¢
with
Q,(t) \/ Qp(1)? + Q(2)?

tan 6(t) = tan ¢(t) =

Q1) Ap + \/Aﬁ) + Q, ()2 + Qy(1)>

population transfer in a three-level system - STIRAP

0 Q) 0
the three-level Hamiltonian we consider is f(l) l Q1) 24, Q1)
0 Q. () 0
and its instantaneous eigenstates are
cos 6 sin 6 cos ¢ sin Osin ¢
lag()=| 0 la_(t) =| —sing [[a, () =] cos¢
—sin 6 cos B cos ¢ cosOsin ¢
with
Q,(0) V@0 + Q0
tan 6(t) = (t) tan ¢(t) =

_ Ap+ \/Aﬁ, + Q, ()2 + Qy(1)>

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |ay(t)) (the dark state)

cos 6(1)
lag(t)) = 0 = cos 6(t)|g) — sin O(t)|r), tan 6(t) =
—sin 6(t)

Q,(1)
Q,(t)

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |ay(t)) (the dark state)

cos 6(1) . Q,(1)
lag(t)) = 0 = cos 6(t)|g) — sin O(t)|r), tan 6(t) =
. Qy(1)
—sin 6(t)

if the pulses are counterintuitively ordered

lg)
) Q) , o r
imam " Imao"" T Imew=o imewn=3

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |ay(t)) (the dark state)

cos 6(1) Q,(1)

lag(t)) = 0 = cos 6(t)|g) — sin O(t)|r), tan 6(t) =
: Q,(1)

—sin 6(t)
if the pulses are counterintuitively ordered
0 o lg)

p Q) . _ . _ T
mom =" Moo= T mmeO=0 jmén=7

then
lag(t;)) = |g) and |ag(tp) = —|r)

population transfer in a three-level system - STIRAP

£ - Q,(t Q

S | lim p():O, 1mﬁ=0
J g Qs(t) [=tp Qp(t)

. Qp(1)

o tan 6(f) = —2

£ =00

&

e (1) = —)

dark state |ay(t)) = cos 6(t)|g) — sin 6(¢)|r)
§§ S H(t)
jaolt)) ~la) .
o SRRLTNLL

population transfer in a three-level system - STIRAP

£ Q,(t Q.(t

S | lim p():O, 1m—S()=0

J g Qs(t) [=tp Qp(t)

: 0,1

£ tan 6(f) = —2

Z . Q,(t)

o

e falt) =~)

dark state |ay(t)) = cos 6(t)|g) — sin 6(¢)|r)
gg 1 o(t)
lao(t)) = |g) “area of the pulses and their overlap > 10”
o SRRLTNL

population transfer in a three-level system - STIRAP

to remember

STIRAP:

- allows for efficient population transfer in a three-level system
- is characterized by the counterintuitive order of the pulses

- is an adiabatic process (area of the pulses should be large and they should overlap)

“super” very short mention of
Optimal Control

“super” very short mention of Optimal Control

system described by the set of differential equations

p(t) = flp(®), u(t),), te][0,T],

« p(t)is the state of the system

o u(t) = (uy (1), uy(t), ... ,up(t)) are controls

“super” very short mention of Optimal Control

system described by the set of differential equations

p(t) = flp(®), u(t),), te][0,T],

« p(t)is the state of the system

o u(t) = (uy (1), uy(t), ... ,up(t)) are controls

introduce a cost functional whose minimization corresponds to the desired dynamics

I, u(0), T) =1~ F = 1 = Tr{plugp(T)}

“super” very short mention of Optimal Control

system described by the set of differential equations

p(t) = flp(®), u(t),), te][0,T],

« p(t)is the state of the system

o u(t) = (uy (1), uy(t), ... ,up(t)) are controls

introduce a cost functional whose minimization corresponds to the desired dynamics

I, u(0), T) =1~ F = 1 = Tr{plugp(T)}

[find u(t) which minimize J

Optimal Control of population transfer in three-level system

set of differential equations (master equation)

B(0) = 3 LH(O), p(0)] + £,p(0)

with Hamiltonian 2
8

1o _ 29 texr + Irel)

h

s()

Optimal Control of population transfer in three-level system

set of differential equations (master equation)

B(0) = 3 LH(O), p(0)] + £,p(0)

with Hamiltonian

g)

HO) _ (ler| + r¥el)

h

()

[the controls are Q,(¢) and Q,(¢)

Optimal Control of population transfer in three-level system
Q,(t) and Q(t) step functions — each pulse parametrized by N real numbers

A
Dt N
P _LZ ;)

to t
time

Optimal Control of population transfer in three-level system
Q,(t) and Q(t) step functions — each pulse parametrized by N real numbers

A
_F7 1\
Pl ;\‘1-4 -

to t
time

minimize the cost function J(p(t), @, T) =1 — Tr{|rXr|o(T)}

with reSpeCt tou = (Qp(t0)5 Qp(tl)9 ceey Qp(tN—l)’ Qs(t0)7 Qs(t1)5 ceey Qs(tN—l))

Optimal Control of population transfer in three-level system

0 <+
10 3 + o Ty=1
® + Ty=>5
o +
®
107" 5 et
]) ++
¥ . +,
| ° + 4
— ° ‘|'.|.+
[] '|'.|.
1072 ®e + 4
3 . +'|'-I-.|.++
... ++++e
°
®e
oo,
....
1073 4 ®®0c00
T T T T T T
0 20 40 60 80 100

Optimal Control of population transfer in three-level system

populations

TQ,,, = 100
T
~
b 10
2
g
e 5
2
=
a
0 -
1.00 1 1.00 1
0.75 1 0.75 1
o504 \ .7 0.50
0.25 - oA 0.25 -
. /~\\
0.00 127 =777~ 1 0001
0.0 0.5 1.0 0.0
time t/T time t/T time t/T

“brief” idea of Reinforcement Learning®

 Markov Decision Processes (MDPs)
- policies
- goals, rewards and returns
- value functions

« policy gradient and REINFORCE

3R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018

Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

« classical formalization of sequential decision making

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

« classical formalization of sequential decision making

- actions influence not just immediate rewards, but also subsequent situations

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

« classical formalization of sequential decision making
- actions influence not just immediate rewards, but also subsequent situations

- mathematically idealized form of the RL problem for which precise theoretical
statements can be made

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

« classical formalization of sequential decision making
- actions influence not just immediate rewards, but also subsequent situations

- mathematically idealized form of the RL problem for which precise theoretical
statements can be made

iwill not be rigorous

Markov Decision Processes (MDPs)

[what are Markov Decision Processes?]

« classical formalization of sequential decision making
- actions influence not just immediate rewards, but also subsequent situations

- mathematically idealized form of the RL problem for which precise theoretical
statements can be made

iwill not be rigorous

there will be some small imprecision

agent-environment interface

state
St

r

YvVY

reward

P hh

agent]—

action
az

VY

DSt

environment]4—

agent the learner and the decision
maker

environment the thing
interacting with the agent,
everything outside the agent

agent-environment interface

state
St

r

YvVY

reward

P hh

agent]—

action
az

VY

DSt

.

environment]4—

at each discrete time stept =0,1,2, ...:

agent the learner and the decision
maker

environment the thing
interacting with the agent,
everything outside the agent

agent-environment interface

r

agent]_ agent the learner and the decision

maker

action . .
a,| environment the thing

interacting with the agent,

state reward
St i

Pl

DSt

.

environment]4— everything outside the agent

at each discrete time stept =0,1,2, ...:

;€S is a repr. of the environment’s state

- the agent receives (13, 5;) =

neEReR isareward

agent-environment interface

r

agent]_ agent the learner and the decision

maker

action . .
a,| environment the thing

interacting with the agent,

state reward
St It

Pl

DSt

.

environment]<— everything outside the agent

at each discrete time stept =0,1,2, ...:

;€S is a repr. of the environment’s state

- the agent receives (13, 5;) =

neEReR isareward

- the agent selects an action a; € A(s;)) — environment

agent-environment interface

> agent ’ agent the learner and the decision
maker
state reward action . .
S; n a,| environment the thing
el interacting with the agent,
e environment]4— everything outside the agent

DS \

at each discrete time stept =0,1,2, ...:

. ;€S is a repr. of the environment’s state
- the agent receives (13, 5;) =
neEReR isareward
- the agent selects an action a; € A(s;)) — environment
+ the environment reaches the new state s;,; and produces the reward r;

agent-environment interface

> agent ’ agent the learner and the decision
maker
state reward action . .
S; n a,| environment the thing
el interacting with the agent,
) environment]4— everything outside the agent

DSt \

the agent, the environment and their interaction give rise to a trajectory

Yo="10,50, 00,1551, A1» -+ > ;s Sty Ay ooe s N5 SN AN

agent-environment interface

> agent ’ agent the learner and the decision
maker
state reward action . .
S; n a,| environment the thing
el interacting with the agent,
) environment]4— everything outside the agent

DSt \

the agent, the environment and their interaction give rise to a trajectory
Te="10,50,00,1,51, Q15 ..., 11, S¢, A oo, I, SN AN
episodic task

« termination step N < oo

- after each episode the environment is reset to an initial state

dynamics function

the environment’s dynamics is completely characterized by

dynamics function p : SXR X8 XA — [0,1]
p(s',r|s,a) = Pri{s; = s',n =r|s;_; =s,a,_1 = a}

. atstept : s;=8,K=r,
« probability that
given thatatstept —1 s;,_, =5, 0,1 =a

dynamics function

the environment’s dynamics is completely characterized by

dynamics function p : SXR X8 XA — [0,1]
p(s',r|s,a) = Pri{s; = s',n =r|s;_; =s,a,_1 = a}

. atstept : s;=8,K=r,
« probability that
given thatatstept —1 s;,_, =5, 0,1 =a

Markov property s; and 1; depend onlyon s;_; and a;_;

dynamics function

the environment’s dynamics is completely characterized by

dynamics function p : SXR X8 XA — [0,1]
p(s',r|s,a) = Pri{s; = s',n =r|s;_; =s,a,_1 = a}

. atstept : s;=8,K=r,
« probability that
given thatatstept —1 s;,_, =5, 0,1 =a

Markov property s; and 1; depend onlyon s;_; and a;_;

not a restriction on the dynamics or the decision process, but a
requirement on the representation of the state

MDP framework - to remember

the MDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:
- the choices made by the agent (the actions)

« the basis on which the choices are made (the states)

- definition of the agent’s goal (the rewards)

MDP framework - to remember

the MDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

« the choices made by the agent (the actions
« the basis on which the choices are made (the states) formalize the task!]

- definition of the agent’s goal (the IM)/

environment dynamics function

MDP framework - to remember

the MDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

« the choices made by the agent (the actions
« the basis on which the choices are made (the states) formalize the task!]

- definition of the agent’s goal (the IM)/

[the actions are what one learns

environment dynamics function

three-level population transfer as an MDP

- the environment is the three-level system and its evolution

- the agent chooses which pulses to apply on the system

three-level population transfer as an MDP

- the environment is the three-level system and its evolution
- the agent chooses which pulses to apply on the system

trajectory: Sg,Qg, 7, S1, Q15 eee s By Sy Qs -en 5 I SN> AN

three-level population transfer as an MDP

- the environment is the three-level system and its evolution
- the agent chooses which pulses to apply on the system

trajectory: Sg,Qg, 7, S1, Q15 eee s By Sy Qs -en 5 I SN> AN

states
s; = p(t) = p¥
actions

a; = (9, o)

three-level population transfer as an MDP

- the environment is the three-level system and its evolution
- the agent chooses which pulses to apply on the system

trajectory: Sg,Qg, 7, S1, Q15 eee s By Sy Qs -en 5 I SN> AN

. evolution of the quantum system:
s; = p(t;) = p® 1 y

P4V = exp(£(Qp, A)AL)p® — 5141 = explL(a)Adls

o o0
@ = (Qp’, Q57 what about r;; ?

three-level population transfer as an MDP

- the environment is the three-level system and its evolution
- the agent chooses which pulses to apply on the system

trajectory: Sg,Qg, 7, S1, Q15 eee s By Sy Qs -en 5 I SN> AN

. evolution of the quantum system:
s; = p(t;) = p® 1 y

P4V = exp(£(Qp, A)AL)p® — 5141 = explL(a)Adls

o o0
@ = (Qp’, Q57 what about r;; ?

what’s missing?

how the agent chooses the actions?

how the agent learns the actions that will achieve our goal?

what’s missing?

how the agent chooses the actions?

how the agent learns the actions that will achieve our goal?

what is the agent?]

policies

[the agent chooses the actions using a policy function

a policy 7 is a mapping from states to probabilities of selecting actions

- agent following policy 7 at time t:
in state s, the agent chooses action a with probability 7(als)

- m(a|s) is a probability distribution over a € A(s) foreachs € 8

policies

[the agent chooses the actions using a policy function

a policy 7 is a mapping from states to probabilities of selecting actions

- agent following policy 7 at time t:
in state s, the agent chooses action a with probability 7(als)

- m(a|s) is a probability distribution over a € A(s) foreachs € 8

Reinforcement Learning methods specify how the agent’s policy is changed as
a result of its interaction with the environment in order to achieve our goal

goals and rewards

reward hypothesis

all of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

goals and rewards

reward hypothesis

all of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards — achieve our goal

goals and rewards

reward hypothesis

all of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards — achieve our goal

+ the reward signal is not the place to impart to the agent prior knowledge about
how to achieve what we want it to do

« the reward signal: what, not how

goals and rewards

reward hypothesis

all of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards — achieve our goal

+ the reward signal is not the place to impart to the agent prior knowledge about
how to achieve what we want it to do

« the reward signal: what, not how

n=rn=-=nm_ =0, ny=Tr{rXrlp™}

return

tajectory: S0, o> 15815 A1 eee 5 1158t Ay oo s A1, I ST, t=0,1,...,T

discounted return
_ 2 T—t-1
Gt =lip1 + Vo YV ligz -ty ! Fr

+ 0 <y < ldiscountrate, 1 rewardatstepk, T < oo termination step

return

tajectory: S0, o> 15815 A1 eee 5 1158t Ay oo s A1, I ST, t=0,1,...,T

discounted return
_ 2 T—t-1
Gt =lip1 + Vo YV ligz -ty ! Fr

+ 0 <y < ldiscountrate, 1 rewardatstepk, T < oo termination step

at each step f the agent has to

maximize the expected return G,]

return

tajectory: S0, o> 15815 A1 eee 5 1158t Ay oo s A1, I ST, t=0,1,...,T

discounted return
_ 2 T—t-1
Gt =lip1 + Vo YV ligz -ty ! Fr

+ 0 <y < ldiscountrate, 1 rewardatstepk, T < oo termination step

at each step f the agent has to

maximize the expected return G,]

myopic agent farsighted agent
y=0 rsi

return

tajectory: S0, o> 15815 A1 eee 5 1158t Ay oo s A1, I ST, t=0,1,...,T
discounted return

=1
_ 2 T—t-1 4 _
Gy =ly1 + Va2 + YV lgz - +Y rr — G =l +thyp+hy+ir

+ 0 <y < ldiscountrate, 1 rewardatstepk, T < ocotermination step

at each step f the agent has to

maximize the expected return G,]

myopic agent farsighted agent
y=0 rsi

value functions

state-value function for policy 7: value of state s under policy =
expected return when starting in s and following 7 thereafter

Ur(8) = Ex[Gyls; = 5]

action-value function for policy 7: value of taking action a in state s under policy 7
expected return starting from s, taking the action a, and following
policy 7 thereafter

4-(s,a) = E[G;ls; = 5,0, = a]

value functions

state-value function for policy 7: value of state s under policy =
expected return when starting in s and following 7 thereafter

Ur(8) = Ex[Gyls; = 5]

action-value function for policy 7: value of taking action a in state s under policy 7
expected return starting from s, taking the action a, and following
policy 7 thereafter

4-(s,a) = E[G;ls; = 5,0, = a]

The value functions v,; and g, can be estimated from experience

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
) environment
DS

r

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
DS

r

« the environment is characterized by the dynamics function

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
PS4 \

« the environment is characterized by the dynamics function
- the agent takes actions following a policy 7(als)

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
PS4 \

« the environment is characterized by the dynamics function
- the agent takes actions following a policy 7(als)

+ Reinforcement Learning methods specify how to change the agent ’s policy in
order to achieve our goal

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
PS4 \

« the environment is characterized by the dynamics function

- the agent takes actions following a policy 7(als)

+ Reinforcement Learning methods specify how to change the agent ’s policy in
order to achieve our goal

- this is done by maximizing the expected return G,

MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
PS4 \

« the environment is characterized by the dynamics function

- the agent takes actions following a policy 7(als)

+ Reinforcement Learning methods specify how to change the agent ’s policy in
order to achieve our goal

- this is done by maximizing the expected return G,

. state-value functions and action-value function can be used to maximize G;

policy gradient methods and
REINFORCE

policy gradient methods

. parameterize the policy with vector 6 € R¢

mo(als) = Pria; = als; = 5,6, = 6}

policy gradient methods

. parameterize the policy with vector 6 € R¢
mo(als) = Pria; = als; = 5,6, = 6}

« introduce scalar performance measure J(9)

policy gradient methods

. parameterize the policy with vector 6 € R¢
mo(als) = Pria; = als; = 5,6, = 6}

« introduce scalar performance measure J(9)

- maximize performance with approximate gradient ascent
Ocs1 = O + aVI(0)

where @) € R%is a stochastic estimate of the gradient of J

policy gradient methods

. parameterize the policy with vector 6 € R¢
mo(als) = Pria; = als; = 5,6, = 6}

« introduce scalar performance measure J(9)

- maximize performance with approximate gradient ascent
Ocs1 = O + aVI(0)

where @) € R%is a stochastic estimate of the gradient of J

[methods that follow this general schema are called policy gradient methods]

REINFORCE: monte carlo policy gradient

the performance is the state-value of the initial state

J(6) = vz, (o)
and obtain the following estimate for the gradient*

Vro(a;ls;)

Vi) = [Eﬂe[Gt mo(a;lse)

] = Er,[GVIn me(a;ls,)]

REINFORCE update

6141 = 6; + aGVIn 7 (ayls;)

“using the policy gradient theorem

REINFORCE algorithm

we have a policy 7y parametrized by 6

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©

2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

+ calculate thereturn G, =1, + 4o + -+ + 17

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

+ calculate thereturn G, =1, + 4o + -+ + 17
« update 6 «— 6 + aG,VIn my(a;|s;)

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

+ calculate thereturn G, =1, + 4o + -+ + 17
« update 6 «— 6 + aG,VIn my(a;|s;)

4. if not “converged” goto 2.

REINFORCE algorithm

we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

+ calculate thereturn G, =1, + 4o + -+ + 17
« update 6 «— 6 + aG,VIn my(a;|s;)

4. if not “converged” goto 2.

after “convergence”

agent following the policy 75 will maximize J(0) = v, (s)

policy for population transfer in three-level systems

\. —— up(p)

P 1“ ~.~?‘s.
‘\ ." "‘:% / — ue(p)
. 2 . 5
0 D L (0f-ke) (af-uy0)
ﬂe(ﬂ'S) = ﬂe((Q s)lp) = We 202 e 202

further pass with tanh to ensure correct range

policy for population transfer in three-level systems

Q(i) gi) environment

p
Vl p(i+1) = eXp(,C(Qg)’le))At)p(l)

o | oo (@we) I
mo(als) = (2, Qo) = e 2 27
further pass with tanh to ensure correct range

i+1
\ b, P()’ri+1

A

policy for population transfer in three-level systems

Q(i) gi) environment

p
Vl p(i+1) = eXp(,C(Qg)’le))At)p(l)

o | oo (@we) I
mo(als) = (2, Qo) = e 2 27
further pass with tanh to ensure correct range

i+1
\ b, P()’ri+1

A

trajectory: sy, a9,H,S1, a1, - > 1, Sis Qi «oe 5 IN> SN AN

policy for population transfer in three-level systems

Q(i) gi) environment

p
Vl p(i+1) = eXp(,C(Qg)’le))At)p(l)

o | oo (@we) I
mo(als) = (2, Qo) = e 2 27
further pass with tanh to ensure correct range

i+1
n) P, 1y

A

trajectory: sy, a9,H,S1, a1, - > 1, Sis Qi «oe 5 IN> SN AN

use REINFORCE to search for optimal policy 7(a,)

1.0 A

s = p(2)
-—- 09

T T T T T
0 200 400 600 800 1000
iteration

TQ. =20, Ty=5

2]
=
=}
7
o
=
—
~

({—.L Jo sytun) saspnd

time t/T

time t/T

discussion and conclusions

this is not a comparison between OCT and RL]

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters

+ however, in the way we implemented it:

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters
+ however, in the way we implemented it:
- free parameters for OCT are 60, for RL are 7644

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters
+ however, in the way we implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT ~ 10~2 computational time of RL
(but greatly varies depending on available hardware: GPUs, CPUs,..)

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters
+ however, in the way we implemented it:
- free parameters for OCT are 60, for RL are 7644
- computational time OCT ~ 10~2 computational time of RL
(but greatly varies depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like
pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL]

. we did not use state of the art algorithm for any of those

- we did not optimize the hyperparameters
+ however, in the way we implemented it:

- free parameters for OCT are 60, for RL are 7644

- computational time OCT ~ 10~2 computational time of RL
(but greatly varies depending on available hardware: GPUs, CPUs,..)

- both easily solve the problem of three-level population transfer giving STIRAP-like
pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

this is the end

	population transfer in three-level systems and STIRAP
	``super'' very short mention of Optimal Control
	Markov Decision Processes (MDPs)
	policy gradient methods and REINFORCE

