
ATutorial on Optimal Control and Reinforcement Learning
methods for QuantumTechnologies

arXiv:2112.07453

Luigi Giannelli1,2, Pierpaolo Sgroi3, Jonathon Brown3, Gheorghe Sorin Paraoanu4, Mauro
Paternostro3, Elisabetta Paladino1,2,5, and Giuseppe Falci1,2,5

1Dipartimento di Fisica e Astronomia “EttoreMajorana”, Universitá di Catania,
2CNR-IMM, Catania (University) Unit,
3CTAMOP, School of Mathematics and Physics, Queens University,
4QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science,
5INFN, Sez. Catania.

Pgi-controlclub, 2022-03-11

motivation

Quantum control is central tomost quantum technologies
(computing, simulation, metrology, …)

QuantumOptimal Control is awidely used tool for the development of quantum
technologies

Reinforcement Learning has huge success in robotics and games, and offers a
direct approach to control problems

outline

1. population transfer in three-level systems and STIRAP

2. “super” very short mention ofOptimal Control and application to 3LS

3. “brief” idea ofReinforcement Learning and application to 3LS

4. discussion and conclusions

population transfer in three-level
systems and STIRAP

population transfer in a three-level system

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)
𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

+
Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] +

𝛾
2(2|𝑠⟩⟨𝑒|𝜌(𝑡)|𝑒⟩⟨𝑠| − |𝑒⟩⟨𝑒|𝜌(𝑡) − 𝜌(𝑡)|𝑒⟩⟨𝑒|)

𝜌(0) = |𝑔⟩⟨𝑔| ⟶ 𝜌(𝑇) = |𝑟⟩⟨𝑟|
fidelity

ℱ = Tr{𝜌(𝑇)|𝑟⟩⟨𝑟|}

population transfer in a three-level system

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)
𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

+
Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] +

𝛾
2(2|𝑠⟩⟨𝑒|𝜌(𝑡)|𝑒⟩⟨𝑠| − |𝑒⟩⟨𝑒|𝜌(𝑡) − 𝜌(𝑡)|𝑒⟩⟨𝑒|)

𝜌(0) = |𝑔⟩⟨𝑔| ⟶ 𝜌(𝑇) = |𝑟⟩⟨𝑟|
fidelity

ℱ = Tr{𝜌(𝑇)|𝑟⟩⟨𝑟|}

population transfer in a three-level system

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)
𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

+
Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] +

𝛾
2(2|𝑠⟩⟨𝑒|𝜌(𝑡)|𝑒⟩⟨𝑠| − |𝑒⟩⟨𝑒|𝜌(𝑡) − 𝜌(𝑡)|𝑒⟩⟨𝑒|)

𝜌(0) = |𝑔⟩⟨𝑔| ⟶ 𝜌(𝑇) = |𝑟⟩⟨𝑟|

fidelity
ℱ = Tr{𝜌(𝑇)|𝑟⟩⟨𝑟|}

population transfer in a three-level system

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)
𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

+
Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] +

𝛾
2(2|𝑠⟩⟨𝑒|𝜌(𝑡)|𝑒⟩⟨𝑠| − |𝑒⟩⟨𝑒|𝜌(𝑡) − 𝜌(𝑡)|𝑒⟩⟨𝑒|)

𝜌(0) = |𝑔⟩⟨𝑔| ⟶ 𝜌(𝑇) = |𝑟⟩⟨𝑟|
fidelity

ℱ = Tr{𝜌(𝑇)|𝑟⟩⟨𝑟|}

population transfer in a three-level system - STIRAP

STimulated RamanAdiabatic Passage (STIRAP)1

• adiabatic protocol

• population of the lossy state |𝑒⟩ low

• ℱ ≈ 1 |𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

1J. R. Kuklinski, U. Gaubatz, F. T. Hioe, K. Bergmann, Phys. Rev. A 40 (11) (1989),
K. Bergmann, H. Theuer, B. Shore, Reviews of Modern Physics 70 (3) (1998),
N. V. Vitanov, A. A. Rangelov, B.W. Shore, K. Bergmann, Reviews of Modern Physics 89 (1) (2017).

population transfer in a three-level system - STIRAP

Adiabatic Theorem
Given a time dependent Hamiltonian𝐻0(𝑡) and its instantaneous eigenstates |𝑛(𝑡)⟩

𝐻0(𝑡)|𝑛(𝑡)⟩ = 𝐸𝑛(𝑡)|𝑛(𝑡)⟩,

the solution of the Schrodinger equation iℏ𝜕|𝜓(𝑡)⟩
𝜕𝑡

= 𝐻0(𝑡)|𝜓(𝑡)⟩

in general is |𝜓(𝑡)⟩ = ∑𝑛 𝑐𝑛(𝑡)|𝑛(𝑡)⟩, ∑𝑛|𝑐𝑛(𝑡)|
2 = 1.

If 𝐻0(𝑡) is slowlyvarying2 and the initial state is an eigenstate, ie |𝜓(𝑡i)⟩ = |𝑚(𝑡i)⟩, then

|𝜓(𝑡)⟩ ≃ ei𝛼𝑚(𝑡)|𝑚(𝑡)⟩, ∀𝑡

i. e. 𝑐𝑛(𝑡) ≃ ei𝛼𝑚(𝑡)𝛿𝑚𝑛.

2ℏ||⟨𝑛(𝑡)|𝜕𝑡𝑚(𝑡)⟩|| ≪ |𝐸𝑛(𝑡) − 𝐸𝑚(𝑡)|, ∀𝑚 ≠ 𝑛.

population transfer in a three-level system - STIRAP

Adiabatic Theorem
Given a time dependent Hamiltonian𝐻0(𝑡) and its instantaneous eigenstates |𝑛(𝑡)⟩

𝐻0(𝑡)|𝑛(𝑡)⟩ = 𝐸𝑛(𝑡)|𝑛(𝑡)⟩,

the solution of the Schrodinger equation iℏ𝜕|𝜓(𝑡)⟩
𝜕𝑡

= 𝐻0(𝑡)|𝜓(𝑡)⟩

in general is |𝜓(𝑡)⟩ = ∑𝑛 𝑐𝑛(𝑡)|𝑛(𝑡)⟩, ∑𝑛|𝑐𝑛(𝑡)|
2 = 1.

If 𝐻0(𝑡) is slowlyvarying2 and the initial state is an eigenstate, ie |𝜓(𝑡i)⟩ = |𝑚(𝑡i)⟩, then

|𝜓(𝑡)⟩ ≃ ei𝛼𝑚(𝑡)|𝑚(𝑡)⟩, ∀𝑡

i. e. 𝑐𝑛(𝑡) ≃ ei𝛼𝑚(𝑡)𝛿𝑚𝑛.

2ℏ||⟨𝑛(𝑡)|𝜕𝑡𝑚(𝑡)⟩|| ≪ |𝐸𝑛(𝑡) − 𝐸𝑚(𝑡)|, ∀𝑚 ≠ 𝑛.

population transfer in a three-level system - STIRAP

Adiabatic Theorem
Given a time dependent Hamiltonian𝐻0(𝑡) and its instantaneous eigenstates |𝑛(𝑡)⟩

𝐻0(𝑡)|𝑛(𝑡)⟩ = 𝐸𝑛(𝑡)|𝑛(𝑡)⟩,

the solution of the Schrodinger equation iℏ𝜕|𝜓(𝑡)⟩
𝜕𝑡

= 𝐻0(𝑡)|𝜓(𝑡)⟩

in general is |𝜓(𝑡)⟩ = ∑𝑛 𝑐𝑛(𝑡)|𝑛(𝑡)⟩, ∑𝑛|𝑐𝑛(𝑡)|
2 = 1.

If 𝐻0(𝑡) is slowlyvarying2 and the initial state is an eigenstate, ie |𝜓(𝑡i)⟩ = |𝑚(𝑡i)⟩, then

|𝜓(𝑡)⟩ ≃ ei𝛼𝑚(𝑡)|𝑚(𝑡)⟩, ∀𝑡

i. e. 𝑐𝑛(𝑡) ≃ ei𝛼𝑚(𝑡)𝛿𝑚𝑛.

2ℏ||⟨𝑛(𝑡)|𝜕𝑡𝑚(𝑡)⟩|| ≪ |𝐸𝑛(𝑡) − 𝐸𝑚(𝑡)|, ∀𝑚 ≠ 𝑛.

adiabatic following of an instantaneous eigenstate

population transfer in a three-level system - STIRAP

the three-level Hamiltonianwe consider is 𝐻(𝑡)
ℏ

= 1
2

⎛
⎜⎜
⎝

0 Ωp(𝑡) 0
Ωp(𝑡) 2Δp Ωs(𝑡)
0 Ωs(𝑡) 0

⎞
⎟⎟
⎠

and its instantaneous eigenstates are

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃
0

− sin 𝜃

⎞
⎟⎟
⎠

|𝑎−(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 cos𝜙
− sin𝜙

cos 𝜃 cos𝜙

⎞
⎟⎟
⎠

|𝑎+(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 sin𝜙
cos𝜙

cos 𝜃 sin𝜙

⎞
⎟⎟
⎠

with

tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

tan𝜙(𝑡) =
√Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

Δ𝑝 +√Δ2𝑝 +Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

population transfer in a three-level system - STIRAP

the three-level Hamiltonianwe consider is 𝐻(𝑡)
ℏ

= 1
2

⎛
⎜⎜
⎝

0 Ωp(𝑡) 0
Ωp(𝑡) 2Δp Ωs(𝑡)
0 Ωs(𝑡) 0

⎞
⎟⎟
⎠

and its instantaneous eigenstates are

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃
0

− sin 𝜃

⎞
⎟⎟
⎠

|𝑎−(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 cos𝜙
− sin𝜙

cos 𝜃 cos𝜙

⎞
⎟⎟
⎠

|𝑎+(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 sin𝜙
cos𝜙

cos 𝜃 sin𝜙

⎞
⎟⎟
⎠

with

tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

tan𝜙(𝑡) =
√Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

Δ𝑝 +√Δ2𝑝 +Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

population transfer in a three-level system - STIRAP

the three-level Hamiltonianwe consider is 𝐻(𝑡)
ℏ

= 1
2

⎛
⎜⎜
⎝

0 Ωp(𝑡) 0
Ωp(𝑡) 2Δp Ωs(𝑡)
0 Ωs(𝑡) 0

⎞
⎟⎟
⎠

and its instantaneous eigenstates are

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃
0

− sin 𝜃

⎞
⎟⎟
⎠

|𝑎−(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 cos𝜙
− sin𝜙

cos 𝜃 cos𝜙

⎞
⎟⎟
⎠

|𝑎+(𝑡)⟩ =
⎛
⎜⎜
⎝

sin 𝜃 sin𝜙
cos𝜙

cos 𝜃 sin𝜙

⎞
⎟⎟
⎠

with

tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

tan𝜙(𝑡) =
√Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

Δ𝑝 +√Δ2𝑝 +Ω𝑝(𝑡)2 +Ω𝑠(𝑡)2

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |𝑎0(𝑡)⟩ (the dark state)

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃(𝑡)
0

− sin 𝜃(𝑡)

⎞
⎟⎟
⎠

= cos 𝜃(𝑡)|𝑔⟩ − sin 𝜃(𝑡)|𝑟⟩, tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

if the pulses are counterintuitively ordered

lim
𝑡→𝑡i

Ω𝑝(𝑡)
Ω𝑠(𝑡)

= 0, lim
𝑡→𝑡f

Ω𝑠(𝑡)
Ω𝑝(𝑡)

= 0 ⟹ lim
𝑡→𝑡i

𝜃(𝑡) = 0, lim
𝑡→𝑡f

𝜃(𝑡) = 𝜋
2

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

then
|𝑎0(𝑡i)⟩ = |𝑔⟩ and |𝑎0(𝑡f)⟩ = −|𝑟⟩

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |𝑎0(𝑡)⟩ (the dark state)

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃(𝑡)
0

− sin 𝜃(𝑡)

⎞
⎟⎟
⎠

= cos 𝜃(𝑡)|𝑔⟩ − sin 𝜃(𝑡)|𝑟⟩, tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

if the pulses are counterintuitively ordered

lim
𝑡→𝑡i

Ω𝑝(𝑡)
Ω𝑠(𝑡)

= 0, lim
𝑡→𝑡f

Ω𝑠(𝑡)
Ω𝑝(𝑡)

= 0 ⟹ lim
𝑡→𝑡i

𝜃(𝑡) = 0, lim
𝑡→𝑡f

𝜃(𝑡) = 𝜋
2

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

then
|𝑎0(𝑡i)⟩ = |𝑔⟩ and |𝑎0(𝑡f)⟩ = −|𝑟⟩

population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |𝑎0(𝑡)⟩ (the dark state)

|𝑎0(𝑡)⟩ =
⎛
⎜⎜
⎝

cos 𝜃(𝑡)
0

− sin 𝜃(𝑡)

⎞
⎟⎟
⎠

= cos 𝜃(𝑡)|𝑔⟩ − sin 𝜃(𝑡)|𝑟⟩, tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

if the pulses are counterintuitively ordered

lim
𝑡→𝑡i

Ω𝑝(𝑡)
Ω𝑠(𝑡)

= 0, lim
𝑡→𝑡f

Ω𝑠(𝑡)
Ω𝑝(𝑡)

= 0 ⟹ lim
𝑡→𝑡i

𝜃(𝑡) = 0, lim
𝑡→𝑡f

𝜃(𝑡) = 𝜋
2

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

then
|𝑎0(𝑡i)⟩ = |𝑔⟩ and |𝑎0(𝑡f)⟩ = −|𝑟⟩

population transfer in a three-level system - STIRAP

lim
𝑡→𝑡i

Ω𝑝(𝑡)
Ω𝑠(𝑡)

= 0, lim
𝑡→𝑡f

Ω𝑠(𝑡)
Ω𝑝(𝑡)

= 0

tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

dark state |𝑎0(𝑡)⟩ = cos 𝜃(𝑡)|𝑔⟩ − sin 𝜃(𝑡)|𝑟⟩

adiabaticity condition
“area of the pulses and their overlap≳ 10”

population transfer in a three-level system - STIRAP

lim
𝑡→𝑡i

Ω𝑝(𝑡)
Ω𝑠(𝑡)

= 0, lim
𝑡→𝑡f

Ω𝑠(𝑡)
Ω𝑝(𝑡)

= 0

tan 𝜃(𝑡) =
Ω𝑝(𝑡)
Ω𝑠(𝑡)

dark state |𝑎0(𝑡)⟩ = cos 𝜃(𝑡)|𝑔⟩ − sin 𝜃(𝑡)|𝑟⟩

adiabaticity condition
“area of the pulses and their overlap≳ 10”

population transfer in a three-level system - STIRAP

to remember

STIRAP:

• allows for efficient population transfer in a three-level system

• is characterized by the counterintuitive order of the pulses

• is an adiabatic process (area of the pulses should be large and they should overlap)

“super” very short mention of
Optimal Control

“super” very shortmention of Optimal Control

system described by the set of differential equations

̇𝜌(𝑡) = 𝑓(𝜌(𝑡), 𝒖(𝑡), 𝑡), 𝑡 ∈ [0, 𝑇],

• 𝜌(𝑡) is the state of the system
• 𝒖(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑀(𝑡)) are controls

introduce a cost functionalwhoseminimization corresponds to the desired dynamics

𝒥(𝜌(𝑡), 𝒖(𝑡), 𝑇) = 1 − ℱ = 1 − Tr{𝜌†targ𝜌(𝑇)}

find 𝒖(𝑡)whichminimize 𝒥

“super” very shortmention of Optimal Control

system described by the set of differential equations

̇𝜌(𝑡) = 𝑓(𝜌(𝑡), 𝒖(𝑡), 𝑡), 𝑡 ∈ [0, 𝑇],

• 𝜌(𝑡) is the state of the system
• 𝒖(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑀(𝑡)) are controls

introduce a cost functionalwhoseminimization corresponds to the desired dynamics

𝒥(𝜌(𝑡), 𝒖(𝑡), 𝑇) = 1 − ℱ = 1 − Tr{𝜌†targ𝜌(𝑇)}

find 𝒖(𝑡)whichminimize 𝒥

“super” very shortmention of Optimal Control

system described by the set of differential equations

̇𝜌(𝑡) = 𝑓(𝜌(𝑡), 𝒖(𝑡), 𝑡), 𝑡 ∈ [0, 𝑇],

• 𝜌(𝑡) is the state of the system
• 𝒖(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑀(𝑡)) are controls

introduce a cost functionalwhoseminimization corresponds to the desired dynamics

𝒥(𝜌(𝑡), 𝒖(𝑡), 𝑇) = 1 − ℱ = 1 − Tr{𝜌†targ𝜌(𝑇)}

find 𝒖(𝑡)whichminimize 𝒥

Optimal Control of population transfer in three-level system

set of differential equations (master equation)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] + ℒ𝛾𝜌(𝑡)

with Hamiltonian

𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

the controls areΩp(𝑡) andΩs(𝑡)

Optimal Control of population transfer in three-level system

set of differential equations (master equation)

̇𝜌(𝑡) = − i
ℏ[𝐻(𝑡), 𝜌(𝑡)] + ℒ𝛾𝜌(𝑡)

with Hamiltonian

𝐻(𝑡)
ℏ = Δp|𝑒⟩⟨𝑒| +

Ωp(𝑡)
2 (|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|) +

Ωs(𝑡)
2 (|𝑒⟩⟨𝑟| + |𝑟⟩⟨𝑒|)

|𝑠⟩

𝛾

|𝑔⟩

|𝑒⟩

|𝑟⟩

Δp

Ωp(𝑡) Ωs(𝑡)

the controls areΩp(𝑡) andΩs(𝑡)

Optimal Control of population transfer in three-level system

Ωp(𝑡) andΩs(𝑡) step functions⟶ each pulse parametrized by𝑁 real numbers

minimize the cost function 𝒥(𝜌(𝑡), 𝒖̄, 𝑇) = 1 − Tr{|𝑟⟩⟨𝑟|𝜌(𝑇)}

with respect to 𝒖̄ = (Ωp(𝑡0), Ωp(𝑡1),… ,Ωp(𝑡𝑁−1), Ωs(𝑡0), Ωs(𝑡1),… ,Ωs(𝑡𝑁−1))

Optimal Control of population transfer in three-level system

Ωp(𝑡) andΩs(𝑡) step functions⟶ each pulse parametrized by𝑁 real numbers

minimize the cost function 𝒥(𝜌(𝑡), 𝒖̄, 𝑇) = 1 − Tr{|𝑟⟩⟨𝑟|𝜌(𝑇)}

with respect to 𝒖̄ = (Ωp(𝑡0), Ωp(𝑡1),… ,Ωp(𝑡𝑁−1), Ωs(𝑡0), Ωs(𝑡1),… ,Ωs(𝑡𝑁−1))

Optimal Control of population transfer in three-level system

0 20 40 60 80 100
𝑇Ωmax

10−3

10−2

10−1

100
1
−
ℱ

𝑇𝛾 = 1
𝑇𝛾 = 5

Optimal Control of population transfer in three-level system

2

4

6

pu
ls
es

(u
ni
ts

of
𝑇
−
1) (a)

𝑇Ωmax ≃ 7.4

0

5

10

(b)

𝑇Ωmax ≃ 13.8

Ωp

Ωs
0

25

50

75

100
(c)

𝑇Ωmax = 100

0.0 0.5 1.0
time 𝑡/𝑇

0.00

0.25

0.50

0.75

1.00

po
pu

la
tio

ns (d)

|𝑔⟩
|𝑒⟩
|𝑟⟩
|𝑠⟩

0.0 0.5 1.0
time 𝑡/𝑇

0.00

0.25

0.50

0.75

1.00

(e)

0.0 0.5 1.0
time 𝑡/𝑇

0.00

0.25

0.50

0.75

1.00

(f)

“brief” idea ofReinforcement Learning3

• MarkovDecision Processes (MDPs)
- policies
- goals, rewards and returns
- value functions

• policy gradient and REINFORCE

3R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018

MarkovDecision Processes (MDPs)

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

MarkovDecision Processes (MDPs)

what areMarkovDecision Processes?

• classical formalization of sequential decisionmaking

• actions influence not just immediate rewards, but also subsequent situations

• mathematically idealized form of the RL problem forwhich precise theoretical
statements can bemade

iwill not be rigorous

therewill be some small imprecision

agent-environment interface

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

agent-environment interface

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

at each discrete time step 𝑡 = 0, 1, 2,… :

• the agent receives (𝑟𝑡, 𝑠𝑡) = {
𝑠𝑡 ∈ 𝒮 is a repr. of the environment’s state

𝑟𝑡 ∈ ℛ ∈ ℝ is a reward

• the agent selects an action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) ⟶ environment
• the environment reaches the new state 𝑠𝑡+1 and produces the reward 𝑟𝑡+1

agent-environment interface

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

at each discrete time step 𝑡 = 0, 1, 2,… :

• the agent receives (𝑟𝑡, 𝑠𝑡) = {
𝑠𝑡 ∈ 𝒮 is a repr. of the environment’s state

𝑟𝑡 ∈ ℛ ∈ ℝ is a reward

• the agent selects an action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) ⟶ environment
• the environment reaches the new state 𝑠𝑡+1 and produces the reward 𝑟𝑡+1

agent-environment interface

agent

environment
𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

action
𝑎𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

at each discrete time step 𝑡 = 0, 1, 2,… :

• the agent receives (𝑟𝑡, 𝑠𝑡) = {
𝑠𝑡 ∈ 𝒮 is a repr. of the environment’s state

𝑟𝑡 ∈ ℛ ∈ ℝ is a reward

• the agent selects an action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) ⟶ environment

• the environment reaches the new state 𝑠𝑡+1 and produces the reward 𝑟𝑡+1

agent-environment interface

agent

environment

action
𝑎𝑡

state
𝑠𝑡

reward
𝑟𝑡

𝑠𝑡+1

𝑟𝑡+1

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

at each discrete time step 𝑡 = 0, 1, 2,… :

• the agent receives (𝑟𝑡, 𝑠𝑡) = {
𝑠𝑡 ∈ 𝒮 is a repr. of the environment’s state

𝑟𝑡 ∈ ℛ ∈ ℝ is a reward

• the agent selects an action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) ⟶ environment
• the environment reaches the new state 𝑠𝑡+1 and produces the reward 𝑟𝑡+1

agent-environment interface

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

the agent, the environment and their interaction give rise to a trajectory

���𝑟0 = 0, 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

agent-environment interface

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

agent the learner and the decision
maker

environment the thing
interactingwith the agent,
everything outside the agent

the agent, the environment and their interaction give rise to a trajectory

���𝑟0 = 0, 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

episodic task
• termination step 𝑁 < ∞

• after each episode the environment is reset to an initial state

dynamics function

the environment’s dynamics is completely characterized by

dynamics function 𝑝 ∶ 𝒮 × ℛ × 𝒮 × 𝒜 → [0, 1]

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟|𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎}

• probability that {
at step 𝑡 ∶ 𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟,

given that at step 𝑡 − 1 𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎

Markov property 𝑠𝑡 and 𝑟𝑡 depend only on 𝑠𝑡−1 and 𝑎𝑡−1

not a restriction on the dynamics or the decision process, but a
requirement on the representation of the state

dynamics function

the environment’s dynamics is completely characterized by

dynamics function 𝑝 ∶ 𝒮 × ℛ × 𝒮 × 𝒜 → [0, 1]

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟|𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎}

• probability that {
at step 𝑡 ∶ 𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟,

given that at step 𝑡 − 1 𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎

Markov property 𝑠𝑡 and 𝑟𝑡 depend only on 𝑠𝑡−1 and 𝑎𝑡−1

not a restriction on the dynamics or the decision process, but a
requirement on the representation of the state

dynamics function

the environment’s dynamics is completely characterized by

dynamics function 𝑝 ∶ 𝒮 × ℛ × 𝒮 × 𝒜 → [0, 1]

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr{𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟|𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎}

• probability that {
at step 𝑡 ∶ 𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟,

given that at step 𝑡 − 1 𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎

Markov property 𝑠𝑡 and 𝑟𝑡 depend only on 𝑠𝑡−1 and 𝑎𝑡−1

not a restriction on the dynamics or the decision process, but a
requirement on the representation of the state

MDP framework - to remember

theMDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

• the choices made by the agent (the actions)

• the basis onwhich the choices aremade (the states)

• definition of the agent’s goal (the rewards)

the actions arewhat one learns

formalize the task!

environment dynamics function

MDP framework - to remember

theMDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

• the choices made by the agent (the actions)

• the basis onwhich the choices aremade (the states)

• definition of the agent’s goal (the rewards)

the actions arewhat one learns

formalize the task!

environment dynamics function

MDP framework - to remember

theMDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

• the choices made by the agent (the actions)

• the basis onwhich the choices aremade (the states)

• definition of the agent’s goal (the rewards)

the actions arewhat one learns

formalize the task!

environment dynamics function

three-level population transfer as anMDP

• the environment is the three-level system and its evolution

• the agent chooseswhich pulses to apply on the system

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

states
𝑠𝑖 = 𝜌(𝑡𝑖) = 𝜌(𝑖)

actions

𝑎𝑖 = (Ω(𝑖)
p , Ω(𝑖)

s)

dynamics function
evolution of the quantum system:

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖) ⟶𝑠𝑖+1 = exp[ℒ(𝑎𝑖)Δ𝑡]𝑠𝑖

what about 𝑟𝑖+1?

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

three-level population transfer as anMDP

• the environment is the three-level system and its evolution

• the agent chooseswhich pulses to apply on the system

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

states
𝑠𝑖 = 𝜌(𝑡𝑖) = 𝜌(𝑖)

actions

𝑎𝑖 = (Ω(𝑖)
p , Ω(𝑖)

s)

dynamics function
evolution of the quantum system:

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖) ⟶𝑠𝑖+1 = exp[ℒ(𝑎𝑖)Δ𝑡]𝑠𝑖

what about 𝑟𝑖+1?

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

three-level population transfer as anMDP

• the environment is the three-level system and its evolution

• the agent chooseswhich pulses to apply on the system

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

states
𝑠𝑖 = 𝜌(𝑡𝑖) = 𝜌(𝑖)

actions

𝑎𝑖 = (Ω(𝑖)
p , Ω(𝑖)

s)

dynamics function
evolution of the quantum system:

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖) ⟶𝑠𝑖+1 = exp[ℒ(𝑎𝑖)Δ𝑡]𝑠𝑖

what about 𝑟𝑖+1?

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

three-level population transfer as anMDP

• the environment is the three-level system and its evolution

• the agent chooseswhich pulses to apply on the system

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

states
𝑠𝑖 = 𝜌(𝑡𝑖) = 𝜌(𝑖)

actions

𝑎𝑖 = (Ω(𝑖)
p , Ω(𝑖)

s)

dynamics function
evolution of the quantum system:

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖) ⟶𝑠𝑖+1 = exp[ℒ(𝑎𝑖)Δ𝑡]𝑠𝑖

what about 𝑟𝑖+1?

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

three-level population transfer as anMDP

• the environment is the three-level system and its evolution

• the agent chooseswhich pulses to apply on the system

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

states
𝑠𝑖 = 𝜌(𝑡𝑖) = 𝜌(𝑖)

actions

𝑎𝑖 = (Ω(𝑖)
p , Ω(𝑖)

s)

dynamics function
evolution of the quantum system:

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖) ⟶𝑠𝑖+1 = exp[ℒ(𝑎𝑖)Δ𝑡]𝑠𝑖

what about 𝑟𝑖+1?

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

what’smissing?

how the agent chooses the actions?

how the agent learns the actions thatwill achieve our goal?

what is the agent?

what’smissing?

how the agent chooses the actions?

how the agent learns the actions thatwill achieve our goal?

what is the agent?

policies

the agent chooses the actions using a policy function

a policy 𝜋 is a mapping from states to probabilities of selecting actions

• agent following policy𝜋 at time 𝑡:
in state 𝑠, the agent chooses action 𝑎with probability𝜋(𝑎|𝑠)

• 𝜋(𝑎|𝑠) is a probability distribution over 𝑎 ∈ 𝒜(𝑠) for each 𝑠 ∈ 𝒮

Reinforcement Learningmethods specify how the agent’s policy is changed as
a result of its interactionwith the environment in order to achieve our goal

policies

the agent chooses the actions using a policy function

a policy 𝜋 is a mapping from states to probabilities of selecting actions

• agent following policy𝜋 at time 𝑡:
in state 𝑠, the agent chooses action 𝑎with probability𝜋(𝑎|𝑠)

• 𝜋(𝑎|𝑠) is a probability distribution over 𝑎 ∈ 𝒜(𝑠) for each 𝑠 ∈ 𝒮

Reinforcement Learningmethods specify how the agent’s policy is changed as
a result of its interactionwith the environment in order to achieve our goal

goals and rewards

reward hypothesis
all of whatwemean bygoals and purposes can bewell thought of as themaximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards⟶ achieve our goal

• the reward signal is not the place to impart to the agent prior knowledge about
how to achievewhatwewant it to do

• the reward signal: what, not how

reward for three-level population transfer

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

goals and rewards

reward hypothesis
all of whatwemean bygoals and purposes can bewell thought of as themaximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards⟶ achieve our goal

• the reward signal is not the place to impart to the agent prior knowledge about
how to achievewhatwewant it to do

• the reward signal: what, not how

reward for three-level population transfer

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

goals and rewards

reward hypothesis
all of whatwemean bygoals and purposes can bewell thought of as themaximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards⟶ achieve our goal

• the reward signal is not the place to impart to the agent prior knowledge about
how to achievewhatwewant it to do

• the reward signal: what, not how

reward for three-level population transfer

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

goals and rewards

reward hypothesis
all of whatwemean bygoals and purposes can bewell thought of as themaximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards⟶ achieve our goal

• the reward signal is not the place to impart to the agent prior knowledge about
how to achievewhatwewant it to do

• the reward signal: what, not how

reward for three-level population transfer

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑁−1 = 0, 𝑟𝑁 = Tr{|𝑟⟩⟨𝑟|𝜌(𝑁)}

return

tajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇, 𝑡 = 0, 1,… , 𝑇

discounted return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3⋯+ 𝛾𝑇−𝑡−1𝑟𝑇

• 0 ≤ 𝛾 ≤ 1 discount rate, • 𝑟𝑘 reward at step 𝑘, • 𝑇 ≤ ∞ termination step

at each step 𝑡 the agent has to

maximize the expected return𝐺𝑡

myopic agent
𝛾 = 0

farsighted agent
𝛾 ≲ 1

return

tajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇, 𝑡 = 0, 1,… , 𝑇

discounted return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3⋯+ 𝛾𝑇−𝑡−1𝑟𝑇

• 0 ≤ 𝛾 ≤ 1 discount rate, • 𝑟𝑘 reward at step 𝑘, • 𝑇 ≤ ∞ termination step

at each step 𝑡 the agent has to

maximize the expected return𝐺𝑡

myopic agent
𝛾 = 0

farsighted agent
𝛾 ≲ 1

return

tajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇, 𝑡 = 0, 1,… , 𝑇

discounted return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3⋯+ 𝛾𝑇−𝑡−1𝑟𝑇

• 0 ≤ 𝛾 ≤ 1 discount rate, • 𝑟𝑘 reward at step 𝑘, • 𝑇 ≤ ∞ termination step

at each step 𝑡 the agent has to

maximize the expected return𝐺𝑡

myopic agent
𝛾 = 0

farsighted agent
𝛾 ≲ 1

return

tajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑡, 𝑠𝑡, 𝑎𝑡,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇, 𝑡 = 0, 1,… , 𝑇

discounted return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3⋯+ 𝛾𝑇−𝑡−1𝑟𝑇
𝛾=1
−−→ 𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3⋯+ 𝑟𝑇

• 0 ≤ 𝛾 ≤ 1 discount rate, • 𝑟𝑘 reward at step 𝑘, • 𝑇 ≤ ∞ termination step

at each step 𝑡 the agent has to

maximize the expected return𝐺𝑡

myopic agent
𝛾 = 0

farsighted agent
𝛾 ≲ 1

value functions

state-value function for policy𝜋: value of state 𝑠 under policy𝜋
expected returnwhen starting in 𝑠 and following 𝜋 thereafter

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠]

action-value function for policy𝜋: value of taking action 𝑎 in state 𝑠 under policy𝜋
expected return starting from 𝑠, taking the action 𝑎, and following
policy𝜋 thereafter

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

The value functions 𝑣𝜋 and 𝑞𝜋 can be estimated from experience

value functions

state-value function for policy𝜋: value of state 𝑠 under policy𝜋
expected returnwhen starting in 𝑠 and following 𝜋 thereafter

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠]

action-value function for policy𝜋: value of taking action 𝑎 in state 𝑠 under policy𝜋
expected return starting from 𝑠, taking the action 𝑎, and following
policy𝜋 thereafter

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

The value functions 𝑣𝜋 and 𝑞𝜋 can be estimated from experience

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function
• the agent takes actions following a policy𝜋(𝑎|𝑠)
• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡
• state-value functions and action-value function can be used tomaximize𝐺𝑡

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function

• the agent takes actions following a policy𝜋(𝑎|𝑠)
• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡
• state-value functions and action-value function can be used tomaximize𝐺𝑡

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function
• the agent takes actions following a policy𝜋(𝑎|𝑠)

• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡
• state-value functions and action-value function can be used tomaximize𝐺𝑡

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function
• the agent takes actions following a policy𝜋(𝑎|𝑠)
• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡
• state-value functions and action-value function can be used tomaximize𝐺𝑡

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function
• the agent takes actions following a policy𝜋(𝑎|𝑠)
• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡

• state-value functions and action-value function can be used tomaximize𝐺𝑡

MDP framework - to remember

agent

environment

action
𝑎𝑡

𝑠𝑡+1

𝑟𝑡+1

state
𝑠𝑡

reward
𝑟𝑡

• the environment is characterized by the dynamics function
• the agent takes actions following a policy𝜋(𝑎|𝑠)
• Reinforcement Learningmethods specify how to change the agent ’s policy in
order to achieve our goal

• this is done bymaximizing the expected return𝐺𝑡
• state-value functions and action-value function can be used tomaximize𝐺𝑡

policy gradientmethods and
REINFORCE

policy gradientmethods

• parameterize the policywith vector 𝜽 ∈ ℝ𝑑

𝜋𝜽(𝑎|𝑠) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝜽𝑡 = 𝜽}

• introduce scalar performancemeasure 𝐽(𝜽)

• maximize performancewith approximate gradient ascent

𝜽𝑘+1 = 𝜽𝑘 + 𝛼𝜵𝐽(𝜽𝑘)

where 𝜵𝐽(𝜽𝑘) ∈ ℝ𝑑 is a stochastic estimate of the gradient of 𝐽

methods that follow this general schema are called policy gradient methods

policy gradientmethods

• parameterize the policywith vector 𝜽 ∈ ℝ𝑑

𝜋𝜽(𝑎|𝑠) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝜽𝑡 = 𝜽}

• introduce scalar performancemeasure 𝐽(𝜽)

• maximize performancewith approximate gradient ascent

𝜽𝑘+1 = 𝜽𝑘 + 𝛼𝜵𝐽(𝜽𝑘)

where 𝜵𝐽(𝜽𝑘) ∈ ℝ𝑑 is a stochastic estimate of the gradient of 𝐽

methods that follow this general schema are called policy gradient methods

policy gradientmethods

• parameterize the policywith vector 𝜽 ∈ ℝ𝑑

𝜋𝜽(𝑎|𝑠) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝜽𝑡 = 𝜽}

• introduce scalar performancemeasure 𝐽(𝜽)

• maximize performancewith approximate gradient ascent

𝜽𝑘+1 = 𝜽𝑘 + 𝛼𝜵𝐽(𝜽𝑘)

where 𝜵𝐽(𝜽𝑘) ∈ ℝ𝑑 is a stochastic estimate of the gradient of 𝐽

methods that follow this general schema are called policy gradient methods

policy gradientmethods

• parameterize the policywith vector 𝜽 ∈ ℝ𝑑

𝜋𝜽(𝑎|𝑠) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝜽𝑡 = 𝜽}

• introduce scalar performancemeasure 𝐽(𝜽)

• maximize performancewith approximate gradient ascent

𝜽𝑘+1 = 𝜽𝑘 + 𝛼𝜵𝐽(𝜽𝑘)

where 𝜵𝐽(𝜽𝑘) ∈ ℝ𝑑 is a stochastic estimate of the gradient of 𝐽

methods that follow this general schema are called policy gradient methods

REINFORCE:monte carlo policy gradient

the performance is the state-value of the initial state

𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

and obtain the following estimate for the gradient4

𝜵𝐽(𝜽) ∝ 𝔼𝜋𝜽[𝐺𝑡
𝜵𝜋𝜽(𝑎𝑡|𝑠𝑡)
𝜋𝜽(𝑎𝑡|𝑠𝑡)

] = 𝔼𝜋𝜽[𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)]

REINFORCE update

𝜽𝑡+1 = 𝜽𝑡 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽𝑡(𝑎𝑡|𝑠𝑡)

4using the policy gradient theorem

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽

3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇

• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

REINFORCE algorithm

we have a policy𝜋𝜽 parametrized by 𝜽

1. initial guess 𝜽

2. generate an episode 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑎𝑇−1, 𝑟𝑇, 𝑠𝑇 following 𝜋𝜽
3. for each step 𝑡 = 0,… , 𝑇 − 1:

• calculate the return𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑇
• update 𝜽 ⟵ 𝜽 + 𝛼𝐺𝑡𝜵 ln𝜋𝜽(𝑎𝑡|𝑠𝑡)

4. if not “converged” goto 2.

after “convergence”
agent following the policy𝜋𝜽will maximize 𝐽(𝜽) = 𝑣𝜋𝜽(𝑠0)

policy for population transfer in three-level systems

𝜌
𝜇𝑝𝜽(𝜌)

𝜇𝑠𝜽(𝜌)

𝜋𝜽(𝑎|𝑠) = 𝜋𝜽((Ω
(𝑖)
p , Ω(𝑖)

s)|𝜌) = 1
2𝜋𝜎2 e

−
(Ω(𝑖)

p −𝜇𝑝𝜃(𝜌))
2

2𝜍2 e−
(Ω(𝑖)

s −𝜇𝑠𝜃(𝜌))
2

2𝜍2

further passwith tanh to ensure correct range

policy for population transfer in three-level systems

agent

𝜌
𝜇𝑝𝜽(𝜌)

𝜇𝑠𝜽(𝜌)

𝜋𝜽(𝑎|𝑠) = 𝜋𝜽((Ω𝑖
p, Ω𝑖

s)|𝜌) =
1

2𝜋𝜍2
e−

(Ω𝑖p−𝜇
𝑝
𝜃(𝜌))

2

2𝜍2 e−
(Ω𝑖s−𝜇𝑠𝜃(𝜌))

2

2𝜍2

further pass with tanh to ensure correct range

Ω(𝑖)
p , Ω(𝑖)

s environment

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖)

𝜌(𝑖+1), 𝑟𝑖+1

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

useREINFORCE to search for optimal policy𝜋(𝑎, 𝑠)

policy for population transfer in three-level systems

agent

𝜌
𝜇𝑝𝜽(𝜌)

𝜇𝑠𝜽(𝜌)

𝜋𝜽(𝑎|𝑠) = 𝜋𝜽((Ω𝑖
p, Ω𝑖

s)|𝜌) =
1

2𝜋𝜍2
e−

(Ω𝑖p−𝜇
𝑝
𝜃(𝜌))

2

2𝜍2 e−
(Ω𝑖s−𝜇𝑠𝜃(𝜌))

2

2𝜍2

further pass with tanh to ensure correct range

Ω(𝑖)
p , Ω(𝑖)

s environment

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖)

𝜌(𝑖+1), 𝑟𝑖+1

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

useREINFORCE to search for optimal policy𝜋(𝑎, 𝑠)

policy for population transfer in three-level systems

agent

𝜌
𝜇𝑝𝜽(𝜌)

𝜇𝑠𝜽(𝜌)

𝜋𝜽(𝑎|𝑠) = 𝜋𝜽((Ω𝑖
p, Ω𝑖

s)|𝜌) =
1

2𝜋𝜍2
e−

(Ω𝑖p−𝜇
𝑝
𝜃(𝜌))

2

2𝜍2 e−
(Ω𝑖s−𝜇𝑠𝜃(𝜌))

2

2𝜍2

further pass with tanh to ensure correct range

Ω(𝑖)
p , Ω(𝑖)

s environment

𝜌(𝑖+1) = exp(ℒ(Ω(𝑖)
p , Ω(𝑖)

s)Δ𝑡)𝜌(𝑖)

𝜌(𝑖+1), 𝑟𝑖+1

trajectory: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1,… , 𝑟𝑖, 𝑠𝑖, 𝑎𝑖,… , 𝑟𝑁, 𝑠𝑁, 𝑎𝑁

useREINFORCE to search for optimal policy𝜋(𝑎, 𝑠)

RL results

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

𝑠 = 𝜌(𝑡)
0.9

𝑇Ωmax = 20, 𝑇𝛾 = 5

RL results

0.0 0.5 1.0
time 𝑡/𝑇

5

10

15

20
pu

ls
es

(u
ni
ts

of
𝑇
−
1)

Ωp

Ωs

0.0 0.5 1.0
time 𝑡/𝑇

0.0

0.2

0.4

0.6

0.8

1.0

po
pu

la
tio

ns |𝑔⟩
|𝑒⟩
|𝑟⟩
|𝑠⟩

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters

• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644

- computational time OCT≈ 10−2 computational time of RL
(but greatlyvaries depending on available hardware: GPUs, CPUs,..)

- both easily solve the problem of three-level population transfer giving STIRAP-like
pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)

- both easily solve the problem of three-level population transfer giving STIRAP-like
pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

discussion and conclusions

this is not a comparison between OCT and RL

• we did not use state of the art algorithm for any of those

• we did not optimize the hyperparameters
• however, in thewaywe implemented it:

- free parameters for OCT are 60, for RL are 7644
- computational time OCT≈ 10−2 computational time of RL

(but greatlyvaries depending on available hardware: GPUs, CPUs,..)
- both easily solve the problem of three-level population transfer giving STIRAP-like

pulses, but OCT slightly better.

https://www.github.com/luigiannelli/threeLS_populationTransfer

https://www.github.com/luigiannelli/threeLS_populationTransfer

this is the end

	population transfer in three-level systems and STIRAP
	``super'' very short mention of Optimal Control
	Markov Decision Processes (MDPs)
	policy gradient methods and REINFORCE

