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motivation

Quantum control is central to most quantum technologies
(computing, simulation, metrology, ...)

Quantum Optimal Control is a widely used tool for the development of quantum
technologies

Reinforcement Learning has huge success in robotics and games, and offers a
direct approach to control problems



1. population transfer in three-level systems and STIRAP
2. “super” very short mention of Optimal Control and application to 3LS
3. “brief” idea of Reinforcement Learning and application to 3LS

4. discussion and conclusions
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fidelity
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population transfer in a three-level system - STIRAP

STimulated Raman Adiabatic Passage (STIRAP)!
- adiabatic protocol

« population of the lossy state |e) low

« Fxl

g)

1. R. Kuklinski, U. Gaubatz, F. T. Hioe, K. Bergmann, Phys. Rev. A 40 (11) (1989),
K. Bergmann, H. Theuer, B. Shore, Reviews of Modern Physics 70 (3) (1998),
N. V. Vitanov, A. A. Rangelov, B. W. Shore, K. Bergmann, Reviews of Modern Physics 89 (1) (2017).
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Adiabatic Theorem

Given a time dependent Hamiltonian H(¢t) and its instantaneous eigenstates |n(t))

Ho(0)|n(1)) = E,(t)|n(1)),

the solution of the Schrodinger equation ihallg(tt» = Hy()[9(1))

in generalis [Y()) = ¥ c,(DIn(), X len(D” = 1.
If Hy(t) is slowly varying? and the initial state is an eigenstate, ie |1(t;)) = |m(t;)), then

[h(t)) =~ elmO|m(t)), Vt

i.e.c,(t) ~ elms

*hl(n()10,m()| < |Ex(t) = Ep(t)|,Ym # n.



adiabatic following of an instantaneous eigenstate

elgenenergy

initial state final state

time
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population transfer in a three-level system - STIRAP

consider the instantaneous eigenstate |ay(t)) (the dark state)

cos 6(1) Q,(1)

lag(t)) = 0 = cos 6(t)|g) — sin O(t)|r), tan 6(t) =
: Q,(1)

—sin 6(t)
if the pulses are counterintuitively ordered
0 o lg)

p Q) . _ . _ T
mom =" Moo= T mmeO=0 jmén=7

then
lag(t;)) = |g) and |ag(tp) = —|r)
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£ Q,(t Q.(t

S | lim p():O, 1m—S()=0

J g Qs(t) [=tp Qp(t)

: 0,1

£ tan 6(f) = —2

Z . Q,(t)

o

e falt) =~ )

dark state |ay(t)) = cos 6(t)|g) — sin 6(¢)|r)
gg 1 o(t)
lao(t)) = |g) “area of the pulses and their overlap > 10”
o SRRLTNL




population transfer in a three-level system - STIRAP

to remember

STIRAP:

- allows for efficient population transfer in a three-level system
- is characterized by the counterintuitive order of the pulses

- is an adiabatic process (area of the pulses should be large and they should overlap)
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system described by the set of differential equations

p(t) = flp(®), u(t), ), te][0,T],

« p(t)is the state of the system

o u(t) = (uy (1), uy(t), ... ,up(t)) are controls

introduce a cost functional whose minimization corresponds to the desired dynamics

I, u(0), T) =1~ F = 1 = Tr{plugp(T)}

[ find u(t) which minimize J




Optimal Control of population transfer in three-level system

set of differential equations (master equation)

B(0) = 3 LH(O), p(0)] + £,p(0)

with Hamiltonian 2
8

1o _ 29 texr + Irel)

h

s()




Optimal Control of population transfer in three-level system

set of differential equations (master equation)

B(0) = 3 LH(O), p(0)] + £,p(0)

with Hamiltonian

g)

HO) _ (ler| + r¥el)

h

()

[ the controls are Q,(¢) and Q,(¢)
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Optimal Control of population transfer in three-level system
Q,(t) and Q(t) step functions — each pulse parametrized by N real numbers

A
_F7 1\
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to t
time

minimize the cost function J(p(t), @, T) =1 — Tr{|rXr|o(T)}

with reSpeCt tou = (Qp(t0)5 Qp(tl)9 ceey Qp(tN—l)’ Qs(t0)7 Qs(t1)5 ceey Qs(tN—l))
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Optimal Control of population transfer in three-level system
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“brief” idea of Reinforcement Learning®

 Markov Decision Processes (MDPs)
- policies
- goals, rewards and returns
- value functions

« policy gradient and REINFORCE

3R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018
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Markov Decision Processes (MDPs)

[ what are Markov Decision Processes? ]

« classical formalization of sequential decision making
- actions influence not just immediate rewards, but also subsequent situations

- mathematically idealized form of the RL problem for which precise theoretical
statements can be made

iwill not be rigorous

there will be some small imprecision
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agent-environment interface

> agent ’ agent the learner and the decision
maker
state reward action . .
S; n a,| environment the thing
el interacting with the agent,
e environment ]4— everything outside the agent

DS \

at each discrete time stept =0,1,2, ...:

. ;€S is a repr. of the environment’s state
- the agent receives (13, 5;) =
neEReR isareward
- the agent selects an action a; € A(s;)) — environment
+ the environment reaches the new state s;,; and produces the reward r;
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agent-environment interface

> agent ’ agent the learner and the decision
maker
state reward action . .
S; n a,| environment the thing
el interacting with the agent,
) environment ]4— everything outside the agent

DSt \

the agent, the environment and their interaction give rise to a trajectory
Te="10,50,00,1,51, Q15 ..., 11, S¢, A oo, I, SN AN
episodic task

« termination step N < oo

- after each episode the environment is reset to an initial state



dynamics function

the environment’s dynamics is completely characterized by

dynamics function p : SXR X8 XA — [0,1]
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« probability that
given thatatstept —1 s;,_, =5, 0,1 =a
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dynamics function

the environment’s dynamics is completely characterized by

dynamics function p : SXR X8 XA — [0,1]
p(s',r|s,a) = Pri{s; = s',n =r|s;_; =s,a,_1 = a}

. atstept : s;=8,K=r,
« probability that
given thatatstept —1 s;,_, =5, 0,1 =a

Markov property s; and 1; depend onlyon s;_; and a;_;

not a restriction on the dynamics or the decision process, but a
requirement on the representation of the state
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three signals passing back and forth between an agent and its environment:
- the choices made by the agent (the actions)

« the basis on which the choices are made (the states)

- definition of the agent’s goal (the rewards)
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MDP framework - to remember

the MDP framework is an abstraction of the problem of goal-directed learning from
interaction

three signals passing back and forth between an agent and its environment:

« the choices made by the agent (the actions
« the basis on which the choices are made (the states) formalize the task! ]

- definition of the agent’s goal (the IM)/

[ the actions are what one learns

environment dynamics function
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trajectory:  Sg,Qg, 7, S1, Q15 eee s By Sy Qs -en 5 I SN> AN

. evolution of the quantum system:
s; = p(t;) = p® 1 y

P4V = exp(£(Qp, A)AL)p® — 5141 = explL(a)Adls

o o0
@ = (Qp’, Q57 what about r;; ?



what’s missing?

how the agent chooses the actions?

how the agent learns the actions that will achieve our goal?




what’s missing?

how the agent chooses the actions?

how the agent learns the actions that will achieve our goal?

what is the agent? ]
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in state s, the agent chooses action a with probability 7(als)

- m(a|s) is a probability distribution over a € A(s) foreachs € 8



policies

[ the agent chooses the actions using a policy function

a policy 7 is a mapping from states to probabilities of selecting actions

- agent following policy 7 at time t:
in state s, the agent chooses action a with probability 7(als)

- m(a|s) is a probability distribution over a € A(s) foreachs € 8

Reinforcement Learning methods specify how the agent’s policy is changed as
a result of its interaction with the environment in order to achieve our goal
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reward hypothesis

all of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (the reward)

maximizing cumulative (weighted) sum of rewards — achieve our goal

+ the reward signal is not the place to impart to the agent prior knowledge about
how to achieve what we want it to do

« the reward signal: what, not how

n=rn=-=nm_ =0, ny=Tr{rXrlp™}
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return

tajectory: S0, o> 15815 A1 eee 5 1158t Ay oo s A1, I ST, t=0,1,...,T
discounted return

=1
_ 2 T—t-1 4 _
Gy =ly1 + Va2 + YV lgz - +Y rr — G =l +thyp+hy+ir

+ 0 <y < ldiscountrate, 1 rewardatstepk, T < ocotermination step

at each step f the agent has to

maximize the expected return G, ]

myopic agent farsighted agent
y=0 rsi
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state-value function for policy 7: value of state s under policy =
expected return when starting in s and following 7 thereafter

Ur(8) = Ex[Gyls; = 5]

action-value function for policy 7: value of taking action a in state s under policy 7
expected return starting from s, taking the action a, and following
policy 7 thereafter
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value functions

state-value function for policy 7: value of state s under policy =
expected return when starting in s and following 7 thereafter

Ur(8) = Ex[Gyls; = 5]

action-value function for policy 7: value of taking action a in state s under policy 7
expected return starting from s, taking the action a, and following
policy 7 thereafter

4-(s,a) = E[G;ls; = 5,0, = a]

The value functions v,; and g, can be estimated from experience
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MDP framework - to remember

{ N\
> agent
. 7
state reward action
S ¥ ay
Chyr
‘< environment
PS4 \

« the environment is characterized by the dynamics function

- the agent takes actions following a policy 7(als)

+ Reinforcement Learning methods specify how to change the agent ’s policy in
order to achieve our goal

- this is done by maximizing the expected return G,

. state-value functions and action-value function can be used to maximize G;
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policy gradient methods

. parameterize the policy with vector 6 € R¢
mo(als) = Pria; = als; = 5,6, = 6}

« introduce scalar performance measure J(9)

- maximize performance with approximate gradient ascent
Ocs1 = O + aVI(0)

where @) € R%is a stochastic estimate of the gradient of J

[ methods that follow this general schema are called policy gradient methods ]




REINFORCE: monte carlo policy gradient

the performance is the state-value of the initial state

J(6) = vz, (o)
and obtain the following estimate for the gradient*

Vro(a;ls;)

Vi) = [Eﬂe[Gt mo(a;lse)

] = Er,[GVIn me(a;ls,)]

REINFORCE update

6141 = 6; + aGVIn 7 (ayls;)

“using the policy gradient theorem
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we have a policy 7y parametrized by 6

1. initial guess ©
2. generate an episode Sy, ag, 1y, S1, A1, --- » A7_1, I, ST following 7
3. foreachstept=0,...,T—1:

+ calculate thereturn G, =1, + 4o + -+ + 17
« update 6 «— 6 + aG,VIn my(a;|s;)

4. if not “converged” goto 2.

after “convergence”

agent following the policy 75 will maximize J(0) = v, (s)
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Q(i) gi) environment

p
Vl p(i+1) = eXp(,C(Qg)’le))At)p(l)

o | oo (@we) I
mo(als) = (2, Qo) = e 2 27
further pass with tanh to ensure correct range

i+1
n ) P, 1y

A

trajectory: sy, a9,H,S1, a1, - > 1, Sis Qi «oe 5 IN> SN AN

use REINFORCE to search for optimal policy 7(a, )
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this is the end
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